02.01.2021

Сила натяжения нити. Сила натяжения нити и применение формулы в бытовых ситуациях Чему равно натяжение нити формула


В механике под нитью понимается материальная система одного измерения, которая под действием приложенных сил может принять форму любой геометрической линии. Нить, не оказывающая сопротивления изгибу и кручению, называется идеальной или абсолютно гибпой нитью. Идеальная нить может быть растяжимой или нерастяжимой (крайняя абстракция). В дальнейшем, при отсутствии специального указания, под термином «гибкая нить» или просто «нить» будем понимать идеальную нерастяжимую или растяжимую нить.

При расчете нити на прочность, вычислении поверхностных сил, действующих на нить, а также в ряде других случаев необходимо учитывать поперечные размеры нити. Поэтому, говоря об одномерности нити, мы, конечно, имеем в виду, что поперечные размеры малы по сравнению с длиной и что они не нарушают перечисленных выше свойств идеальной нити.

Модель идеальной нити представляет некоторую абстракцию, однако во многих случаях пряжа и нитки (в процессе их изготовления), тросы, цепи и канаты вполне удовлетворительно отвечают этой модели. К этой же модели сводятся иногда плоские задачи механики некоторых лент и оболочек. Поэтому теория идеальной нити имеет большое прикладное значение.

Пусть нить под действием приложенных к ней сил приняла некоторую равновесную конфигурацию.

Положение каждой точки растянутой или нерастяжимой нити будем определять дуговой координатой 5, отсчитываемой от фиксированной точки нити, например точки А (рис. 1.1). Выделим на нити какой-нибудь ее отрезок длиной и массой . Плотностью растянутой нити в точке (иногда говорят линейной плотностью) называется предел отношения при условии, что точка стремится по нити к точке М:

В общем случае линейная плотность нити зависит от выбранной точки, т. е.

Если до растяжения плотность нити была одинакова во всех точках, то нить называется однородной, в противном случае - неоднородной. При данном определении линейной плотности нити ее неоднородность может быть вызвана неоднородностью материала или различной площадью поперечного сечения нити.

Пусть нить находится в равновесии под действием распределенных сил. Сделаем в точке нити мысленный разрез и рассмотрим силу с которой часть нити, расположенная в направлении положительного отсчета дуговой координаты (на рис. 1.2 правая часть нити) действует на другую (левую) часть нити. Очевидно, что эта сила, называемая натяжением нити, направлена по общей касательной к нити в точке (в § 1.2 это утверждение будет доказано). Естественно, что левая часть нити действует на правую часть с

такой же по модулю, но направленной в противоположную сторону силой, т. е. силой

В каждой точке нити имеется свое натяжение Поэтому при равновесии натяжение нити будет функцией дуговой координаты

Если ввести единичный касательный вектор то будем иметь

где модуль натяжения нити.

Нормальное напряжение нити о определяется, как обычно, равенством

Здесь площадь поперечного сечения нити.

Пусть до растяжения длина элемента нити была а после растяжения она сделалась равной Так как растяжение нити зависит от нормального напряжения, то отношение представляет некоторую функцию а

Задавая функцию мы получим соответствующий закон растяжения, например упругое, пластическое растяжение и т. п. Остановимся более подробно на упругом растяжении однородной нити по закону Гука, когда выполняется равенство

где - модуль упругости нити. Пользуясь равенством (1.3), получим

где а удельное относительное удлинение нити. Если нить нерастяжима, то

Заметим, что модуль упругости нити имеет размерность обычной силы: в Международной системе физических единиц в технической системе соответственно и Очевидно, что

где модуль упругости материала нити пли

Пусть диаметры нити до и после растяжения. Тогда относительное изменение диаметра нити определится равенством

Считая, что нить изотропна и что растяяение подчинено закону Гука, будем иметь

где коэффициент Пуассона. Пользуясь равенствами (1.4) и (1.6), найдем значение диаметра нити после растяжения

Как правило, величина ничтожно мала по сравнению с единицей. Поэтому изменением диаметра нити при ее растяжении обычно пренебрегают (но крайней мере для стальных тросов) и полагают, что для растянутого троса

Рассмотрим нить, на которую действует распределенные по ее длине силы, например силы тяжести, силы

давления ветра и т. п. Главный вектор сил, действующих на элемент нити обозначим через и будем считать, что он приложен к точке находящейся мелщу (рис. 1.3). Силой, отнесенной к единице длины нити, или интенсивностью распределенных сил называется выражение

Отсюда с точностью до членов высшего порядка относительно получим

Размерность силы, отнесенной к единице длины нити, отличается от размерности обычной силы: в системе она равна в технической системе -

Распределенные силы, действующие на нить, можно разбить на массовые и поверхностные. К первым относятся силы, зависящие от массы нити, например силы тяжести и силы инерции. Поверхностные силы, например силы давления набегающего потока, от массы нити не зависят (они могут зависеть от площади продольного диаметрального сечения нити, т. е. от ее диаметра, скорости набегающего потока и других факторов).

Остановимся более подробно на массовых силах. Если через обозначить силу, отнесенную к единице длины, то сила отнесенная к единице массы нити, определится равенством

В частности, для силы тяжести будем иметь

где ускорение силы тяжести, сила тяжести, отнесенная к единице длины нити. Для однородной нерастянутой нити сила численно равна весу единицы длины пити.

Так как масса нити при растяжении не изменяется, то будем иметь

Отсюда, пользуясь равенством (1.3), получим

Таким образом, массовые силы, отнесенные к единице длины растяжимой нити, можно представить равенством

Поверхностные силы, отнесенные к единице длины, обычно пропорциональны диаметру нити

где коэффициент пропорциональности X зависит от разных факторов (например, от скорости потока, плотности среды и т. п.). Как уже отмечалось, в подавляющем большинстве случаев изменением диаметра растяжимой нити можно пренебречь, и тогда число в последней формуле следует считать постоянным. Для растяжимых нитей, модуль упругости которых очень мал, возможен случай, когда изменение диаметра нити нужно учесть. Тогда следует воспользоваться формулой (1.8).

В общем случае сила отнесенная к единице длины нити, зависит от дуговой координаты точки положения последней в пространстве, направления касательной или нормали к нити и натяжения Действительно, плотность и, следовательно, сила тяжести неоднородной нити зависят от положения точки на нити, т. е. от ее дуговой координаты Сила гидростатического давления направлена по нормали к нити и модуль ее пропорционален высоте уровня, т. е. эта сила зависит от координат точки. Из формулы (1.15) следует, что в аналитическое выражение силы отнесенной к единице длины растянутой нити, явно входит модуль

натяжения Поэтому, если рассматривать пить в прямоугольной системе координат то в общем случае будем иметьРис. 1.4.

Если же концы нити закреплены, то эти равенства могут служить для определения реакций точек закрепления. Чаще всего встречаются нити с двумя закрепленными концами, реже - нити с одним закрепленным и одним свободным концами, причем задается или можно определить из дополнительной информации значение силы, приложенной к свободному концу (положение его, как правило, неизвестно). Встречаются и более сложные граничные условия. Многие из них будут рассмотрены при изучении конкретных задач. Кроме непосредственных условий на границах, должны быть заданы геометрические (один или несколько) параметры, например длина нити, стрела провисания и т. п. Эти элементы мы будем условно относить также к граничным условиям.

Теперь можно сформулировать основную задачу о равновесии идеальной нити: даны действующие на нить силы (распределенные и сосредоточенные), закон растяжения нити и найдены в необходимом числе граничные условия. Требуется определить форму равновесия нити, натяжение ее в любой точке и изменение длины (для растяжимых нитей).

В заключение отметим, что при решении конкретных задач основные трудности возникают, как правило, при интегрировании дифференциальных уравнений равновесия нити. Однако следует иметь в виду, что во многих случаях уравнения равновесия нити интегрируются сравнительно легко, а наибольшие затруднения появляются при построении решения, удовлетворяющего граничным условиям.


Необходимо знать точку приложения и направление каждой силы. Важно уметь определить какие именно силы действуют на тело и в каком направлении. Сила обозначается как , измеряется в Ньютонах. Для того, чтобы различать силы, их обозначают следующим образом

Ниже представлены основные силы, действующие в природе. Придумывать не существующие силы при решении задач нельзя!

Сил в природе много. Здесь рассмотрены силы, которые рассматриваются в школьном курсе физики при изучении динамики. А также упомянуты другие силы, которые будут рассмотрены в других разделах.

Сила тяжести

На каждое тело, находящееся на планете, действует гравитация Земли . Сила, с которой Земля притягивает каждое тело, определяется по формуле

Точка приложения находится в центре тяжести тела. Сила тяжести всегда направлена вертикально вниз .


Сила трения

Познакомимся с силой трения. Эта сила возникает при движении тел и соприкосновении двух поверхностей. Возникает сила в результате того, что поверхности, если рассмотреть под микроскопом, не являются гладкими, как кажутся. Определяется сила трения по формуле:

Сила приложена в точке соприкосновения двух поверхностей. Направлена в сторону противоположную движению.

Сила реакции опоры

Представим очень тяжелый предмет, лежащий на столе. Стол прогибается под тяжестью предмета. Но согласно третьему закону Ньютона стол воздействует на предмет с точно такой же силой, что и предмет на стол. Сила направлена противоположно силе, с которой предмет давит на стол. То есть вверх. Эта сила называется реакцией опоры. Название силы "говорит" реагирует опора . Эта сила возникает всегда, когда есть воздействие на опору. Природа ее возникновения на молекулярном уровне. Предмет как бы деформировал привычное положение и связи молекул (внутри стола), они, в свою очередь, стремятся вернуться в свое первоначальное состояние, "сопротивляются".

Абсолютно любое тело, даже очень легкое (например,карандаш, лежащий на столе), на микроуровне деформирует опору. Поэтому возникает реакция опоры.

Специальной формулы для нахождения этой силы нет. Обозначают ее буквой , но эта сила просто отдельный вид силы упругости, поэтому она может быть обозначена и как

Сила приложена в точке соприкосновения предмета с опорой. Направлена перпендикулярно опоре.


Так как тело представляем в виде материальной точки, силу можно изображать с центра

Сила упругости

Это сила возникает в результате деформации (изменения первоначального состояния вещества). Например, когда растягиваем пружину, мы увеличиваем расстояние между молекулами материала пружины. Когда сжимаем пружину - уменьшаем. Когда перекручиваем или сдвигаем. Во всех этих примерах возникает сила, которая препятствует деформации - сила упругости.

Закон Гука


Сила упругости направлена противоположно деформации.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

При последовательном соединении, например, пружин жесткость рассчитывается по формуле

При параллельном соединении жесткость

Жесткость образца. Модуль Юнга.

Модуль Юнга характеризует упругие свойства вещества. Это постоянная величина, зависящая только от материала, его физического состояния. Характеризует способность материала сопротивляться деформации растяжения или сжатия. Значение модуля Юнга табличное.

Подробнее о свойствах твердых тел .

Вес тела

Вес тела - это сила, с которой предмет воздействует на опору. Вы скажете, так это же сила тяжести! Путаница происходит в следующем: действительно часто вес тела равен силе тяжести, но это силы совершенно разные. Сила тяжести - сила, которая возникает в результате взаимодействия с Землей. Вес - результат взаимодействия с опорой. Сила тяжести приложена в центре тяжести предмета, вес же - сила, которая приложена на опору (не на предмет)!

Формулы определения веса нет. Обозначается эта силы буквой .

Сила реакции опоры или сила упругости возникает в ответ на воздействие предмета на подвес или опору, поэтому вес тела всегда численно одинаков силе упругости, но имеет противоположное направление.



Сила реакции опоры и вес - силы одной природы, согласно 3 закону Ньютона они равны и противоположно направлены. Вес - это сила, которая действует на опору, а не на тело. Сила тяжести действует на тело.

Вес тела может быть не равен силе тяжести. Может быть как больше, так и меньше, а может быть и такое, что вес равен нулю. Это состояние называется невесомостью . Невесомость - состояние, когда предмет не взаимодействует с опорой, например, состояние полета: сила тяжести есть, а вес равен нулю!



Определить направление ускорения возможно, если определить, куда направлена равнодействующая сила

Обратите внимание, вес - сила, измеряется в Ньютонах. Как верно ответить на вопрос: "Сколько ты весишь"? Мы отвечаем 50 кг, называя не вес, а свою массу! В этом примере, наш вес равен силе тяжести, то есть примерно 500Н!

Перегрузка - отношение веса к силе тяжести

Сила Архимеда

Сила возникает в результате взаимодействия тела с жидкость (газом), при его погружении в жидкость (или газ). Эта сила выталкивает тело из воды (газа). Поэтому направлена вертикально вверх (выталкивает). Определяется по формуле:

В воздухе силой Архимеда пренебрегаем.

Если сила Архимеда равна силе тяжести, тело плавает. Если сила Архимеда больше, то оно поднимается на поверхность жидкости, если меньше - тонет.



Электрические силы

Существуют силы электрического происхождения. Возникают при наличии электрического заряда. Эти силы, такие как сила Кулона , сила Ампера , сила Лоренца , подробно рассмотрены в разделе Электричество .

Схематичное обозначение действующих на тело сил

Часто тело моделируют материальной точкой . Поэтому на схемах различные точки приложения переносят в одну точку - в центр, а тело изображают схематично кругом или прямоугольником.

Для того, чтобы верно обозначить силы, необходимо перечислить все тела, с которыми исследуемое тело взаимодействует. Определить, что происходит в результате взаимодействия с каждым: трение, деформация, притяжение или может быть отталкивание. Определить вид силы, верно обозначить направление. Внимание! Количество сил будет совпадать с числом тел, с которыми происходит взаимодействие.

Главное запомнить

1) Силы и их природа;
2) Направление сил;
3) Уметь обозначить действующие силы

Различают внешнее (сухое) и внутреннее (вязкое) трение. Внешнее трение возникает между соприкасающимися твердыми поверхностями, внутреннее - между слоями жидкости или газа при их относительном движении. Существует три вида внешнего трения: трение покоя, трение скольжения и трение качения.

Трение качения определяется по формуле

Сила сопротивления возникает при движении тела в жидкости или в газе. Величина силы сопротивления зависит от размеров и формы тела, скорости его движения и свойств жидкости или газа. При небольших скоростях движения сила сопротивления пропорциональна скорости тела

При больших скоростях пропорциональна квадрату скорости

Рассмотрим взаимное притяжение предмета и Земли. Между ними, согласно закону гравитации возникает сила

А сейчас сравним закон гравитации и силу тяжести

Величина ускорения свободного падения зависит от массы Земли и ее радиуса! Таким образом, можно высчитать, с каким ускорением будут падать предметы на Луне или на любой другой планете, используя массу и радиус той планеты.

Расстояние от центра Земли до полюсов меньше, чем до экватора. Поэтому и ускорение свободного падения на экваторе немного меньше, чем на полюсах. Вместе с тем, следует отметить, что основной причиной зависимости ускорения свободного падения от широты местности, является факт вращения Земли вокруг своей оси.

При удалении от поверхности Земли сила земного тяготения и ускорения свободного падения изменяются обратно пропорционально квадрату расстояния до центра Земли.


В физике, сила натяжения - это сила, действующая на веревку, шнур, кабель или похожий объект или группу объектов. Все, что натянуто, подвешено, поддерживается или качается на веревке, шнуре, кабеле и так далее, является объектом силы натяжения. Подобно всем силам, натяжение может ускорять объекты или становиться причиной их деформации. Умение рассчитывать силу натяжения является важным навыком не только для студентов физического факультета, но и для инженеров, архитекторов; те, кто строит устойчивые дома, должны знать, выдержит ли определенная веревка или кабель силу натяжения от веса объекта так, чтобы они не проседали и не разрушались. Приступайте к чтению статьи, чтобы научиться рассчитывать силу натяжения в некоторых физических системах.

Шаги

Определение силы натяжения на одной нити

  1. Определите силы на каждом из концов нити. Сила натяжения данной нити, веревки является результатом сил, натягивающих веревку с каждого конца. Напоминаем, сила = масса × ускорение . Предполагая, что веревка натянута туго, любое изменение ускорения или массы объекта, подвешенного на веревке, приведет к изменению силы натяжения в самой веревке. Не забывайте о постоянном ускорении силы тяжести - даже если система находится в покое, ее составляющие являются объектами действия силы тяжести. Мы можем предположить, что сила натяжения данной веревки это T = (m × g) + (m × a), где «g» - это ускорение силы тяжести любого из объектов, поддерживаемых веревкой, и «а» - это любое другое ускорение, действующее на объекты.

    • Для решения множества физических задач, мы предполагаем идеальную веревку - другими словами, наша веревка тонкая, не обладает массой и не может растягиваться или рваться.
    • Для примера, давайте рассмотрим систему, в которой груз подвешен к деревянной балке с помощью одной веревки (смотрите на изображение). Ни сам груз, ни веревка не двигаются - система находится в покое. Вследствие этого, нам известно, чтобы груз находился в равновесии, сила натяжения должна быть равна силе тяжести. Другими словами, Сила натяжения (F t) = Сила тяжести (F g) = m × g.
      • Предположим, что груз имеет массу 10 кг, следовательно, сила натяжения равна 10 кг × 9,8 м/с 2 = 98 Ньютонов.
  2. Учитывайте ускорение. Сила тяжести - не единственная сила, что может влиять на силу натяжения веревки - такое же действие производит любая сила, приложенная к объекту на веревке с ускорением. Если, к примеру, подвешенный на веревке или кабеле объект ускоряется под действием силы, то сила ускорения (масса × ускорение) добавляется к силе натяжения, образованной весом этого объекта.

    • Предположим, что в нашем примере на веревку подвешен груз 10 кг, и вместо того, чтобы быть прикрепленным к деревянной балке, его тянут вверх с ускорением 1 м/с 2 . В этом случае, нам необходимо учесть ускорение груза, также как и ускорение силы тяжести, следующим образом:
      • F t = F g + m × a
      • F t = 98 + 10 кг × 1 м/с 2
      • F t = 108 Ньютонов.
  3. Учитывайте угловое ускорение. Объект на веревке, вращающийся вокруг точки, которая считается центром (как маятник), оказывает натяжение на веревку посредством центробежной силы. Центробежная сила - дополнительная сила натяжения, которую вызывает веревка, «толкая» ее внутрь так, чтобы груз продолжал двигаться по дуге, а не по прямой. Чем быстрее движется объект, тем больше центробежная сила. Центробежная сила (F c) равна m × v 2 /r где «m»– это масса, «v» - это скорость, и «r» - радиус окружности, по которой движется груз.

    • Так как направление и значение центробежной силы меняются в зависимости от того, как объект движется и меняет свою скорость, то полное натяжение веревки всегда параллельно веревке в центральной точке. Запомните, что сила притяжения постоянно действует на объект и тянет его вниз. Так что, если объект раскачивается вертикально, полное натяжение сильнее всего в нижней точке дуги (для маятника это называется точкой равновесия), когда объект достигает максимальной скорости, и слабее всего в верхней точке дуги, когда объект замедляется.
    • Давайте предположим, что в нашем примере объект больше не ускоряется вверх, а раскачивается как маятник. Пусть наша веревка будет длиной 1,5 м, а наш груз движется со скоростью 2 м/с, при прохождении через нижнюю точку размаха. Если нам нужно рассчитать силу натяжения в нижней точке дуги, когда она наибольшая, то сначала надо выяснить равное ли давление силы тяжести испытывает груз в этой точке, как и при состоянии покоя - 98 Ньютонов. Чтобы найти дополнительную центробежную силу, нам необходимо решить следующее:
      • F c = m × v 2 /r
      • F c = 10 × 2 2 /1.5
      • F c =10 × 2,67 = 26,7 Ньютонов.
      • Таким образом, полное натяжение будет 98 + 26,7 = 124,7 Ньютона.
  4. Учтите, что сила натяжения благодаря силе тяжести меняется по мере прохождения груза по дуге. Как было отмечено выше, направление и величина центробежной силы меняются по мере того, как качается объект. В любом случае, хотя сила тяжести и остается постоянной, результирующая сила натяжения в результате тяжести тоже меняется. Когда качающийся объект находится не в нижней точке дуги (точке равновесия), сила тяжести тянет его вниз, но сила натяжения тянет его вверх под углом. По этой причине сила натяжения должна противодействовать части силы тяжести, а не всей ее полноте.

    • Разделение силы гравитации на два вектора сможет помочь вам визуально изобразить это состояние. В любой точке дуги вертикально раскачивающегося объекта, веревка составляет угол «θ» с линией, проходящей через точку равновесия и центр вращения. Как только маятник начинает раскачиваться, сила гравитации (m × g) разбивается на 2 вектора - mgsin(θ), действуя по касательной к дуге в направлении точки равновесия и mgcos(θ), действуя параллельно силе натяжения, но в противоположном направлении. Натяжение может только противостоять mgcos(θ) - силе, направленной против нее - не всей силе тяготения (исключая точку равновесия, где все силы одинаковы).
    • Давайте предположим, что, когда маятник отклоняется на угол 15 градусов от вертикали, он движется со скоростью 1,5 м/с. Мы найдем силу натяжения следующими действиями:
      • Отношение силы натяжения к силе тяготения (T g) = 98cos(15) = 98(0,96) = 94,08 Ньютона
      • Центробежная сила (F c) = 10 × 1,5 2 /1,5 = 10 × 1,5 = 15 Ньютонов
      • Полное натяжение = T g + F c = 94,08 + 15 = 109,08 Ньютонов.
  5. Рассчитайте трение. Любой объект, который тянется веревкой и испытывает силу «торможения» от трения другого объекта (или жидкости), передает это воздействие натяжению в веревке. Сила трения между двумя объектами рассчитывается также, как и в любой другой ситуации - по следующему уравнению: Сила трения (обычно пишется как F r) = (mu)N, где mu - это коэффициент силы трения между объектами и N - обычная сила взаимодействия между объектами, или та сила, с которой они давят друг на друга. Отметим, что трение покоя - это трение, которое возникает в результате попытки привести объект, находящийся в покое, в движение - отличается от трения движения - трения, возникающего в результате попытки заставить движущийся объект продолжать движение.

    • Давайте предположим, что наш груз в 10 кг больше не раскачивается, теперь его буксируют по горизонтальной плоскости с помощью веревки. Предположим, что коэффициент трения движения земли равен 0,5 и наш груз движется с постоянной скоростью, но нам нужно придать ему ускорение 1м/с 2 . Эта проблема представляет два важных изменения - первое, нам больше не нужно рассчитывать силу натяжения по отношению к силе тяжести, так как наша веревка не удерживает груз на весу. Второе, нам придется рассчитать натяжение, обусловленное трением, также как и вызванное ускорением массы груза. Нам нужно решить следующее:
      • Обычная сила (N) = 10 кг & × 9,8 (ускорение силы тяжести) = 98 N
      • Сила трения движения (F r) = 0,5 × 98 N = 49 Ньютонов
      • Сила ускорения (F a) = 10 kg × 1 м/с 2 = 10 Ньютонов
      • Общее натяжение = F r + F a = 49 + 10 = 59 Ньютонов.

    Расчет силы натяжения на нескольких нитях

    1. Поднимите вертикальные параллельные грузы с помощью блока. Блоки - это простые механизмы, состоящие из подвесного диска, что позволяет менять направление силы натяжения веревки. В простой конфигурации блока, веревка или кабель идет от подвешенного груза вверх к блоку, затем вниз к другому грузу, создавая тем самым два участка веревки или кабеля. В любом случае натяжение в каждом из участков будет одинаковым, даже если оба конца будут натягиваться силами разных величин. Для системы двух масс, подвешенных вертикально в блоке, сила натяжения равна 2g(m 1)(m 2)/(m 2 +m 1), где «g» - ускорение силы тяжести, «m 1 » - масса первого объекта, «m 2 »– масса второго объекта.

      • Отметим следующее, физические задачи предполагают, что блоки идеальны - не имеют массы, трения, они не ломаются, не деформируются и не отделяются от веревки, которая их поддерживает.
      • Давайте предположим, что у нас есть два вертикально подвешенных на параллельных концах веревки груза. У одного груза масса 10 кг, а у второго - 5 кг. В этом случае, нам необходимо рассчитать следующее:
        • T = 2g(m 1)(m 2)/(m 2 +m 1)
        • T = 2(9,8)(10)(5)/(5 + 10)
        • T = 19,6(50)/(15)
        • T = 980/15
        • T = 65,33 Ньютонов.
      • Отметим, что, так как один груз тяжелее, все остальные элементы равны, эта система начнет ускоряться, следовательно, груз 10 кг будет двигаться вниз, заставляя второй груз идти вверх.
    2. Подвесьте грузы, используя блоки с не параллельными вертикальными нитями. Блоки зачастую используются для того, чтобы направлять силу натяжения в направлении, отличном от направления вниз или вверх. Если, к примеру, груз подвешен вертикально к одному концу веревки, а другой конец держит груз в диагональной плоскости, то непараллельная система блоков принимает форму треугольника с углами в точках с первых грузом, вторым и самим блоком. В этом случае натяжение в веревке зависит как от силы тяжести, так и от составляющей силы натяжения, которая параллельна к диагональной части веревки.

      • Давайте предположим, что у нас есть система с грузом в 10 кг (m 1), подвешенным вертикально, соединенный с грузом в 5 кг(m 2), расположенным на наклонной плоскости в 60 градусов (считается, что этот уклон не дает трения). Чтобы найти натяжение в веревке, самым легким путем будет сначала составить уравнения для сил, ускоряющих грузы. Далее действуем так:
        • Подвешенный груз тяжелее, здесь нет трения, так что мы знаем, что он ускоряется вниз. Натяжение в веревке тянет вверх, так что он ускоряется по отношению к равнодействующей силе F = m 1 (g) - T, или 10(9,8) - T = 98 - T.
        • Мы знаем, что груз на наклонной плоскости ускоряется вверх. Так как она не имеет трения, мы знаем, что натяжение тянет груз вверх по плоскости, а вниз его тянет только свой собственный вес. Составляющая силы, тянущей вниз по наклонной, вычисляется как mgsin(θ), так что в нашем случае мы можем заключить, что он ускоряется по отношению к равнодействующей силе F = T - m 2 (g)sin(60) = T - 5(9,8)(0,87) = T - 42,14.
        • Если мы приравняем эти два уравнения, то получится 98 - T = T - 42,14. Находим Т и получаем 2T = 140,14, или T = 70,07 Ньютонов.
    3. Используйте несколько нитей, чтобы подвесить объект. В заключение, давайте представим, что объект подвешен на «Y-образной» системе веревок - две веревки закреплены на потолке и встречаются в центральной точке, из которой идет третья веревка с грузом. Сила натяжения третьей веревки очевидна - простое натяжение в результате действия силы тяжести или m(g). Натяжения на двух остальных веревках различаются и должны составлять в сумме силу, равную силе тяжести вверх в вертикальном положении и равны нулю в обоих горизонтальных направлениях, если предположить, что система находится в состоянии покоя. Натяжение в веревке зависит от массы подвешенных грузов и от угла, на который отклоняется от потолка каждая из веревок.

      • Давайте предположим, что в нашей Y-образной системе нижний груз имеет массу 10 кг и подвешен на двух веревках, угол одной из которых составляет с потолком 30 градусов, а угол второй - 60 градусов. Если нам нужно найти натяжение в каждой из веревок, нам понадобится рассчитать горизонтальную и вертикальную составляющие натяжения. Чтобы найти T 1 (натяжение в той веревке, наклон которой 30 градусов) и T 2 (натяжение в той веревке, наклон которой 60 градусов), нужно решить:
        • Согласно законам тригонометрии, отношение между T = m(g) и T 1 и T 2 равно косинусу угла между каждой из веревок и потолком. Для T 1 , cos(30) = 0,87, как для T 2 , cos(60) = 0,5
        • Умножьте натяжение в нижней веревке (T=mg) на косинус каждого угла, чтобы найти T 1 и T 2 .
        • T 1 = 0,87 × m(g) = 0,87 × 10(9,8) = 85,26 Ньютонов.
        • T 2 =0,5 × m(g) = 0,5 × 10(9,8) = 49 Ньютонов.

Модуль напряженности поля, создаваемого бесконечно длинной прямой однородно заряженной нитью (или цилиндром) на расстоянии r от ее оси

где t - линейная плотность заряда (см. п. 3).

Если заряженная нить имеет конечную длину, то напряженность поля в точке, находящейся на перпендикуляре, восстановленном из середины нити, на расстоянии r от нее

,

где q - угол между направлением нормали к нити и радиус-вектором, проведенным из рассматриваемой точки к концу нити.


Поверхностная плотность заряда

Заряд, распределенный на поверхности S, характеризуется поверхностной плотностью s

,

где Q – заряд, однородно распределенный на площадке S.

Напряженность заряженной плоскости

Напряженность поля, создаваемая бесконечной равномерно заряженной плоскостью,

Напряженность поля плоского конденсатора

Напряженность поля, создаваемая внутри заряженного плоского конденсатора для случая, если расстояние между пластинами много меньше линейных размеров пластин конденсатора

СПРАВОЧНЫЙ МАТЕРИАЛ

Электрическая постоянная e 0 =8,85×10 -12 Ф/м.

Элементарный заряд q=1,6×10 -19 Кл.

Масса электрона m=9,1×10 -31 кг.

Постоянная м/Ф.

ВОПРОСЫ И УПРАЖНЕНИЯ

1. Какие фундаментальные свойства присущи электрическому заряду? Сформулируйте закон сохранения заряда.

2. В каких единицах измеряется электрический заряд? Чему равен элементарный заряд?

3. Какому закону подчиняется сила взаимодействия точечных зарядов? Какие утверждения содержит закон Кулона?

4. Получите численное значение и единицу электрической постоянной e 0 .

5. Как рассчитывается сила взаимодействия точечного заряда и зарядов, распределенных на телах конечных размеров?



6. Можно ли воспользоваться законом Кулона при расчете силы взаимодействия двух заряженных тел сферической формы?

7. Что является источником электрического поля? Как обнаруживается и исследуется электрическое поле?

8. Дайте определение напряженности электрического поля. В каких единицах измеряется напряженность?

9. Напишите формулу для напряженности E точечного заряда q. Изобразите график зависимости E(r), где r – расстояние от точечного заряда до точки поля, в которой определяется напряженность.

10. Каково содержание принципа суперпозиции электрических полей?

12. Как вычисляется поток вектора напряженности электрического поля через любую поверхность?

13. Сформулируйте и запишите теорему Гаусса в интегральной форме.

14. Получите выражение для напряженности Е однородно заряженной бесконечной плоскости с поверхностной плотностью заряда s.

15. Получите выражение для напряженности E однородно заряженной сферы, цилиндра.

16. Напишите теорему Остроградского-Гаусса в дифференциальной форме.

ЗАДАЧИ ГРУППЫ А

1.(9.13) Два точечных заряда q 1 =7,5 нКл и q 2 =–14,7 нКл расположены на расстоянии r=5 см друг от друга. Найти напряженность E электрического поля в точке, находящейся на расстоянии a=3 см от положительного заряда и b=4 см от отрицательного заряда.

Ответ: E=112 кВ/м.

2.(9.15) Два металлических шарика одинакового радиуса и массы подвешены в одной точке на нитях одинаковой длины так, что их поверхности соприкасаются. Какой заряд Q нужно сообщить шарикам, чтобы сила натяжения нитей стала равной T=98 мН? Расстояние от центра шарика до точки подвеса равно l =10 см, масса каждого шарика m=5 г.

Ответ: Q=1,1 мкКл.

3.(9.19) К вертикально расположенной бесконечной однородно заряженной плоскости прикреплена нить, на другом конце которой расположен одноименно заряженный шарик массой m=40 мг и зарядом q=31,8 нКл. Сила натяжения нити, на которой висит шарик, T=0,5 мН. Найти поверхностную плотность заряда s на плоскости. Диэлектрическая проницаемость среды, в которой находится заряд e=6. Ускорение свободного падения g=10 м/с 2 .

Ответ: s=1×10 -6 Кл/м 2 .

4.(9.20) Найти силу F, действующую на заряд q=0,66 нКл, если заряд помещен: а) на расстоянии r 1 =2 см от длинной однородно заряженной нити с линейной плотностью заряда t=0,2 мкКл/м; б) в поле однородно заряженной плоскости с поверхностной плотностью заряда s=20 мкКл/м 2 ; в) на расстоянии r 2 =2 см от поверхности однородно заряженного шара радиусом R=2 см и поверхностной плотностью заряда s=20 мкКл/м 2 . Диэлектрическая проницаемость среды e=6.

Ответ: а) F 1 =20мкН; б) F 2 =126мкН; в) F 3 =62,8 мкН.

5.(9.23) С какой силой F l электрическое поле бесконечной однородно заряженной плоскости действует на единицу длины однородно заряженной бесконечно длинной нити, помещенной в это поле? Линейная плотность заряда на нити t=3 мкКл/м и поверхностная плотность заряда на плоскости s=20 мкКл/м 2 .

Ответ: F l =3,4 Н/м.

6.(9.26) С какой силой F s на единицу площади отталкиваются две одноименные однородно заряженные бесконечно протяженные плоскости. Поверхностная плотность заряда на плоскостях s=0,3 мкКл/м 2 .

Ответ: F s =5,1 кН/м 2 .

7.(9.29) Показать, что электрическое поле, образованное однородно заряженной нитью конечной длины, в предельных случаях переходит в электрическое поле: а) бесконечно длинной заряженной нити; б) точечного заряда.

8.(9.30) Длина однородно заряженной нити l =25 см. При каком предельном расстоянии a от нити по нормали к ее середине возбуждаемое ею электрическое поле можно рассматривать как поле бесконечно длинной заряженной нити? Ошибка d при таком допущении не должна превышать 0,05. Указание: допускаемая ошибка d равна (E 2 –E 1)/E 2 , где E 2 – напряженность электрического поля бесконечно длинной нити, E 1 – напряженность поля нити конечной длины.

Ответ: a=4,18 см.

9.(9.33) Напряженность электрического поля на оси однородно заряженного кольца имеет максимальное значение на некотором расстоянии от центра кольца. Во сколько раз напряженность электрического поля в точке, расположенной на половине этого расстояния, будет меньше максимального значения напряженности?

Ответ: в 1,3 раза.

10. По четверти кольца радиусом r=6,1 см однородно распределен положительный заряд с линейной плотностью t=64 нКл/м. Найти силу F, действующую на заряд q=12 нКл, расположенный в центре кольца.

Ответ: F=160 мкН.

11. Получите соотношения п.12 раздела “Основные формулы для решения задач”.

ЗАДАЧИ ГРУППЫ Б

1.(3.2) Два одинаковых заряженных алюминиевых шарика, подвешенных в воздухе на нитях одинаковой длины, закрепленных в одной точке, опускают в жидкий диэлектрик. При этом оказалось, что угол расхождения нитей не изменился. Какова плотность r жидкого диэлектрика, если его относительная диэлектрическая проницаемость e=2? Плотность алюминия r a =2700 кг/м 3 .

Ответ: r=1350 кг/м 3 .

2.(3.6) В вершинах квадрата находятся одинаковые заряды по q=300 пКл каждый. Какой отрицательный заряд Q нужно поместить в центре квадрата, чтобы сила взаимного отталкивания зарядов была уравновешена силой притяжения к отрицательному заряду?

Ответ: Q=–0,287 нКл.

3.(3.7) В вершинах правильного шестиугольника со стороной b=10 см находятся одинаковые заряды по q=1 нКл каждый. Чему равна сила F, действующая на каждый заряд со стороны пяти остальных?

Ответ: F=1,64×10 -6 Н.

4.(3.8) Два положительных точечных заряда q 1 =1 нКл и q 2 =2 нКл находятся на расстоянии r=5 см друг от друга. Какой величины и в каком месте нужно расположить отрицательный заряд Q, чтобы вся система находилась в равновесии?

Какое будет равновесие?

Ответ: Q=–0,34 нКл нужно расположить на расстоянии 2,07 см от заряда q 1 на линии, соединяющей заряды. Равновесие неустойчивое.

5.(3.13) Электрическое поле создается двумя длинными параллельными равномерно и одинаково заряженными нитями, расположенными на расстоянии l =5 см друг от друга. Напряженность электрического поля в точке, равноотстоящей от каждой нити на расстояние b=5 см, равна E=1 мВ/м. Определить линейную плотность заряда t на каждой нити.

Ответ: t=1,6·10 -15 Кл/м.

6. Плоский горизонтально расположенный конденсатор с расстоянием между обкладками d=1 см заполнен касторовым маслом с плотностью r 0 =900 кг/м 3 . В масле взвешен заряженный медный шарик радиусом R=1 мм, несущий заряд Q=1 мкКл. Определить напряжение U, подаваемое на обкладки конденсатора, если плотность меди r=8,6×10 3 кг/м 3 , а ускорение свободного падения g=10 м/с 2 .

Ответ: U=3,2 В.

7.(3.17) Электрическое поле создается тонким проволочным однородно заряженным кольцом. Определить радиус R кольца, если точка, в которой напряженность электрического поля максимальна, расположена на оси кольца на расстоянии x=1 см от его центра.

Ответ: R=1,41 см.

8.(3.21) Поверхностная плотность заряда бесконечно протяженной вертикальной плоскости равна s=200 мкКл/м 2 . К плоскости на нити подвешен заряженный шарик массой m=10 г. Определить заряд q шарика, если нить образует с плоскостью угол a=30 0 .

Ответ: q=5 нКл.

9.(3.24) На отрезке тонкого прямого стержня длиной l =10 см однородно распределен заряд с линейной плотностью t=3 мкКл/см. Вычислить напряженность E, создаваемую этим зарядом, в точке, расположенной на оси стержня и удаленной от ближайшего его конца на расстояние a=10 см.

Ответ: E=13,5 МВ/м.

10.(3.28) Отрицательно заряженная пылинка находится в равновесии между двумя пластинами плоского конденсатора, расположенными горизонтально. Расстояние между пластинами d=2 см, разность потенциалов на пластинах U=612 В. Масса пылинки m=10 пг. Сколько электронов несет на себе пылинка? Ускорение свободного падения g=10 м/с 2 .

Ответ: 20.

11.(3.33) Капля массой m=10 -10 г и зарядом q, равным 10 зарядам электрона, поднимается вертикально вверх с ускорением a=2,2 м/с 2 между горизонтально расположенными пластинами плоского конденсатора. Определить поверхностную плотность заряда s на пластинах конденсатора. Силой сопротивления воздуха пренебречь. Ускорение свободного падения g=10 м/с 2 .

Ответ: s=6,75 мкКл/м 2 .

ЗАДАЧИ ГРУППЫ С

1. Получите соотношения п.14 раздела “Основные формулы для решения задач”.

2. Рассчитайте поле однородно заряженного по объему шара на расстоянии r от его центра, если радиус шара R, а объемная плотность заряда r.

Ответ: r

3. Найти напряженность электрического поля в заштрихованной плоскости, образованной пересечением двух однородно заряженных по объему шаров, с плотностями заряда r и –r. Расстояние между центрами шаров а

Ответ: .

4. Шар радиусом R заполнен зарядом, объемная плотность которого изменяется по закону в области , где В=const, r - расстояние от центра шара. Рассчитать напряженность поля, создаваемую этим шаром, как функцию радиуса.

Ответ: ;

5. Полусфера равномерно заряжена с поверхностной плотностью заряда s=67 нКл/м 2 . Найти напряженность поля Е в центре полусферы.

Ответ: E=s/(4e 0)=1,9 кВ/м.

6. Прямая бесконечная тонкая нить несет заряд с линейной плотностью t 1 . Перпендикулярно нити расположен тонкий стержень длиной l (см. рис. 3.2). Ближайший к нити конец стержня находится на расстоянии а от нее. Определить силу F, действующую на стержень со стороны нити, если он заряжен с линейной плотностью t 2 .

Ответ: .

7. По тонкой нити, изогнутой по дуге окружности, однородно распределен заряд с линейной плотностью t=10 нКл/м. Определить напряженность электрического поля Е, создаваемую распределенным зарядом, в точке, совпадающей с центром кривизны дуги. Длина нити l =15 см составляет одну треть длины окружности.

Ответ: =2,17 кВ/м.

8. Длинный цилиндр радиусом R однородно заряжен с объемной плотностью заряда r. Найти зависимость напряженности электростатического поля, создаваемой этим цилиндром от расстояния r до его оси.

Ответ: 0R, .

9. Напряженность электрического поля в точке, находящейся на перпендикуляре, восстановленном из центра однородно заряженного диска, на расстоянии x от него, имеет вид: , где s – поверхностная плотность заряда диска, R – его радиус. Получите это соотношение. Как изменится ответ задачи, если однородно заряженный диск радиусом R 2 имеет концентрическое отверстие радиусом R 1 (R 2 >R 1)?

Ответ: .

10. Горизонтально расположенный диск, радиус которого R=0,5 м, заряжен однородно с поверхностной плотностью s=3,33×10 -4 Кл/м 2 . Маленький шарик массой m=3,14 г, имеющий заряд q=3,27×10 -7 Кл, находится над центром диска в состоянии равновесия. Определить его расстояние от центра диска. Ускорение свободного падения g=10 м/c 2 .

Силой натяжения называют ту, что действует на объект, сравнимый с проволокой, шнуром, кабелем, ниткой и так далее. Это могут быть несколько объектов сразу, в таком случае сила натяжения будет действовать на них и необязательно равномерно. Объектом натяжения называют любой предмет, подвешенный на все вышеперечисленное. Но кому это нужно знать? Несмотря на специфичность информации, она может пригодиться даже в бытовых ситуациях.

Например, при ремонте дома или квартиры . Ну и, конечно же, всем людям, чья профессия связана с расчетами:

  • инженерам;
  • архитекторам;
  • проектировщикам и пр.

Натяжения нити и подобных объектов

А зачем им это знать и какая от этого практическая польза? В случае с инженерами и конструкторами знания о мощи натяжения позволят создавать устойчивые конструкции . Это означает, что сооружения, техника и прочие конструкции смогут дольше сохранять свою целостность и прочность. Условно, эти расчеты и знания можно разделить на 5 основных пунктов, чтобы в полной мере понять, о чем идет речь.

1 Этап

Задача: определить силу натяжения на каждом из концов нити. Эту ситуацию можно рассматривать как результат воздействия сил на каждый конец нити. Она равняется массе, помноженной на ускорение свободного падения. Предположим, что нить натянута туго. Тогда любые воздействия на объект приведет к изменению натяжения (в самой нити). Но даже при отсутствии активных действий, по умолчанию будет действовать сила притяжения. Итак, подставим формулу: Т=м*g+м*а, где g – ускорение падения (в данном случае подвешенного объекта), а – любое иное ускорение, действующее извне.

Есть множество сторонних факторов, влияющих на расчеты – вес нити, ее кривизна и так далее . Для простых расчетов это мы не будем пока что учитывать. Иными словами – пусть нить будет идеальна с математической точки зрения и «без изъянов».

Возьмем «живой» пример. На балке подвешена прочная нить с грузом в 2 кг. При этом отсутствует ветер, покачивания и прочие факторы, так или иначе влияющие на наши расчеты. Тогда мощь натяжения равна силе тяжести. В формуле это можно выразить так: Fн=Fт=м*g, в нашем случае это 9,8*2=19,6 ньютона.

2 Этап

Заключается он в вопросе об ускорении . К уже имеющейся ситуации давайте добавим условие. Суть его в том, чтобы на нить действовало еще и ускорение. Возьмем пример попроще. Представим, что нашу балку теперь поднимают вверх со скоростью 3 м/с. Тогда, к натяжению прибавится ускорение груза и формула примет следующий вид: Fн=Fт+уск*м. Ориентируясь на прошлые расчеты получаем: Fн=19,6+3*2=25,6 ньютона.

3 Этап

Тут уже посложнее, так как речь идет об угловом вращении . Следует понимать, что при вращении объекта вертикально, сила, воздействующая на нить, будет намного больше в нижней точке. Но давайте возьмем пример с несколько меньшей амплитудой качания (по типу маятника). В этом случае для расчетов нужна формула: Fц=м* v²/r. Тут искомое значение обозначает дополнительную мощь натяжения, v – скорость вращения подвешенного груза, а r – радиус окружности, по которому вращается груз. Последнее значение фактически равняется длине нити, пускай она составляет 1,7 метра.

Итак, подставляя значения, находим центробежные данные: Fц=2*9/1,7=10,59 ньютона. А теперь, чтобы узнать полную силу натяжения нити, надо к имеющимся данным о состоянии покоя прибавить центробежную силу: 19,6+10,59=30,19 ньютона.

4 Этап

Следует учитывать меняющуюся силу натяжения по мере прохождения груза через дугу . Иными словами – независимо от постоянной величины притяжения, центробежная (результирующая) сила меняется по мере того, как качается подвешенный груз.

Чтобы лучше понять этот аспект, достаточно представить себе привязанный груз к веревке, которую можно свободно вращать вокруг балки, к которой она закреплена (как качели). Если веревку раскачать достаточно сильно, то в момент нахождения в верхнем положении сила притяжения будет действовать в «обратную» сторону относительно силы натяжения веревки. Иными словами – груз станет «легче», из-за чего ослабнет и натяжение на веревку.

Предположим, что маятник отклоняется на угол, равный двадцати градусам от вертикали и движется со скоростью 1,7 м/с. Сила притяжения (Fп) при этих параметрах будет равна 19,6*cos(20)=19,6*0,94=18,424 Н; центробежная сила (F ц=mv²/r)=2*1,7²/1,7=3,4 Н; ну а полное натяжение (Fпн) будет равняться Fп+ Fц=3,4+18,424=21,824 Н.

5 Этап

Его суть заключается в силе трения между грузом и другим объектом , что в совокупности косвенно влияет на натяжение веревки. Иначе говоря – сила трения способствует увеличению силы натяжения. Это хорошо видно на примере перемещения объектов по шершавой и гладкой поверхностях. В первом случае трение будет большим, поэтому и сдвигать предмет становится тяжелее.

Общее натяжение в данном случае вычисляется по формуле: Fн=Fтр+Fу, где Fтр – трение, а Fу – ускорение. Fтр=мкР, где мк – трение между объектами, а Р – сила взаимодействия между ними.

Чтобы лучше понять данный аспект, рассмотрим задачу. Допустим, у нас груз 2 кг и коэффициент трения равен 0,7 с ускорением движения 4м/с постоянной скорости. Теперь задействуем все формулы и получаем:

  1. Сила взаимодействия - Р=2*9,8=19,6 ньютона.
  2. Трение - Fтр=0,7*19,6=13,72 Н.
  3. Ускорение - Fу=2*4=8 Н.
  4. Общая сила натяжения - Fн=Fтр+Fу=13,72+8=21,72 ньютона.

Теперь вы знаете больше и можете сами находить и рассчитывать нужные значения. Конечно, для более точных расчетов нужно учитывать больше факторов, но для сдачи курсовой и реферата этих данных вполне достаточно.

Видео

Это видео поможет вам лучше разобраться в данной теме и запомнить ее.


© 2024
100izh.ru - Астрология. Фэн-Шуй. Нумерология. Медицинская энциклопедия